DISCOVERY OF PERTURBED SIGNALING STATES IN BLOOD IMMUNE CELLS FROM CRITICALLY ILL PATIENTS THAT DEVELOP SEPSIS AND ARDS

Ekaterina Murzin, Alec Griffith, Julie Ng, Katherin Zambrano, John Pulford, Daniel Younger, Mark Perrella, Rebecca Baron, James Lederer BWH and Harvard Medical School, Boston, MA, USA

Background and Introduction

- Critically ill, immune compromised patients are at high risk of developing opportunistic bacterial infections, sepsis, acute respiratory distress syndrome (ARDS), and other life-threatening complications.
- To gain new insights into perturbed immune cell phenotypes associated with the development of sepsis, ARDS, and mortality in patients, we applied a whole blood mass cytometry (CyTOF) approach to comprehensively measure signaling states in all peripheral immune cell types at single cell resolutions.
- We introduce this **Functional CyTOF** method by profiling whole blood samples from non-sepsis and sepsis ICU patients for perturbed phosphosignaling patterns in specific immune cell subsets at baseline or after LPS or PMA/Ionomycin stimulation
- We hypothesize that this approach will provide new insights into the "immune" health" of immune compromised patients that develop sepsis or complications of sepsis in the medical ICU to help better understand the functional immune changes contributing to sepsis, ARDS, and mortality.

Methods

- Blood samples were prepared from patients in the medical ICU at Brigham and Women's Hospital with the indicated demographics and clinical metadata
- 0.2 mL of whole blood was incubated with 5µg/mL of *E. coli* lipopolysaccharide (LPS, O26:B6), PMA/Ionomycin (10ng/mL, 1 μ M) or no stimuli for 10 minutes
- Proteomic stabilizer buffer (Smart Tube, Inc) was added to stop signaling and stabilize cells for freezing at -80°C
- Samples were thawed and prepared for CyTOF staining with a 48-marker antibody panel (10 phospho-protein markers and 38 immune cell phenotyping markers)
- CyTOF staining data was analyzed using our OMIQ analysis platform for computational clustering, dimensional reduction, and statistics
- Plasma samples were analyzed by a 41 cytokine Luminex panel

Results

- We applied a **Functional CyTOF** workflow to detect phosphosignaling profiles in all blood immune cells at single-cell resolutions at baseline
- Immune cell subset abundances were not different between non-sepsis and sepsis patients, but non-survivors had significantly higher circulating neutrophils and lower monocyte percentages
- The **p38MAPK**, **p44/42MAPK** signaling pathways were identified as being perturbed in specific immune cell types in sepsis patients (P-p38MAPK high in monocytes, Pp44/42MAPK low in neutrophils)
- Neutrophils were the primary immune cell type showing perturbed p38MAPK and p44/42MAPK signaling in ARDS or non-survivors - high P-p38MAPK in ARDS and nonsurvivors and low P-p44/42MAPK in ARDS patients
- Multiple cytokine profiling assays identified different cytokine levels between nonsepsis and sepsis patients, alive and non-survivors, and non-ARDS and ARDS patients. Cytokines most significantly affected included: **IL-18, MIP3α, Rantes, IP-10, Gro**- α , Flt3L, PDGF-AA, and PDGF-BB.

Conclusions and Future Directions

- We demonstrate that **Functional CyTOF** approaches to study altered signaling (shown here), cytokine expression, or epigenetic marks in small volumes of clinical samples has potential to reveal new insights into the immune health of individuals with disease
- Future work done in collaboration with the BWH medical and surgical ICU will apply functional CyTOF and other systems immunology approaches to advance our understanding immune dysfunction in trauma, sepsis, and other immune compromised patients

Shock Society, 2023 **Poster #231**

Functional mass cytometry (CyTOF) shows perturbed phosphosignaling phenotypes in neutrophils and monocytes in whole blood from sepsis patients

Brigham and Women's Hospital Harvard Medical School https://ledererlab.bwh.harvard.edu/

Patient Demographics and Clinical Metadata							
Gender	Average Age	% Cancer+	Non-Sepsis ICU Controls	Sepsis	Sepsis + ARDS	APACHE	Non-Survival
12 Male (46.9%)	59.1	87%	25%	75%	67%	23.8	41.70%
15 Female (53.1%)	58.2	20%	33%	66.70%	10.00%	23.4	26.70%

Functional Mass Cytometry (CyTOF) Workflow

Phospho-Signaling Functional CyTOF Panel							
Marker	Cellular Location	Metal					
045	Cell surface	89Y					
)172ab	Cell surface	111Cd					
)4	Cell surface	112Cd					
)20	Cell surface	113Cd					
08	Cell surface	114Cd					
)3	Cell surface	115In					
056	Cell surface	116Cd					
066b	Cell surface	141Pr					
-67	Cytoplasm	142Nd					
0134	Cell surface	143Nd					
)39	Cell surface	144Nd					
064	Cell surface	145Nd					
014	Cell surface	146Nd					
010	Cell surface	147Sm					
NF-kB P65 (S536)	Cytoplasm	148Nd					
018	Cell surface	149Sm					
011c	Cell surface	150Nd					
LCK	Cvtoplasm	151Eu					
A-A.B.C	Cell surface	152Sm					
lak2	Cytoplasm	153Eu					
)15	Cell surface	154Sm					
)35	Cell surface	155Gd					
eaved Caspase-3	Cytoplasm	156Gd					
)16	Cell surface	157Gd					
17R	Cell surface	158Gd					
)621	Cell surface	159Th					
Stat1 (Y701)	Cytoplasm	160Gd					
)63		161Dv					
)123	Cell surface	162Dv					
)121h		16304					
)182		164Dv					
)177		165Ho					
	Cytonlasm	166Fr					
μοσινιά τις (1 100/ 1 102) μΔΔ/ΔΟΓΚ (ΤΟΩΟ/VOΩΛ)	Cytoplasm	167Fr					
<u>אדדן דבועותו וג (דבטבן דבט4)</u> ההמצוק	Cytoplasm	168Fr					
Stat2 (V705)	Cytoplasm	160Tm					
ΔΚΤ (\$/73)	Cytoplasm	170Er					
<u>124/3)</u>		171Vh					
)104))77/		172Vh					
)///		172Vh					
2+2+E2/b (2061)		174VL					
Sc Bibo (5225 (226)	Cytoplasm	1751					
סנ גואט (געגא/געג) כפבף (געגא)	Cytoplasm						
		1040					
		1942					
.A-UK		195Pt					
J141	icell surface	1196Pt					

Cell surface Cell surface 198Pt 209Bi

Workflow and Data Analysis

Phospho-CyTOF Workflow

Optimization Study With Blood From Normal Healthy Volunteers

FIGURES AND TABLES

Figure 1: Whole Blood Immune Cell Subset Profiles Detected by CyTOF